iT邦幫忙

第 11 屆 iThome 鐵人賽

DAY 29
0
Google Developers Machine Learning

ML Study Jam Journey系列 第 29

Day 29 Summary (cont.)

  • 分享至 

  • xImage
  •  

Intro to TensorFlow

Cloud Machine Learning Engine

  • Train, deploy, and productionalize ML models at scale

Estimators

  • Interchangeable
  • Test many standard pre-made estimator models in quick succession

Checkpoints


Feature Engineering

Scale to large datasets

Find good features

Preprocessing


Art and Science of Machine Learning

Parameter Norm Penalties

  • L1 / L2 regularization
  • Max-norm regularization

Hyperparameter Tuning

  • ML models - Functions with parameters and hyper-parameters
  • Sensitive to batch size and learning rate (dataset-dependent)

Logistic Regression

  • Use Cross Entropy typically

上一篇
Day 28 Summary
下一篇
Day 30 Summary (cont.)
系列文
ML Study Jam Journey30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言